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A B S T R A C T

Community science—scientific investigation conducted partly or entirely by non-professional scientists—has
many advantages. For example, community science mobilizes large numbers of volunteers who can, at low cost,
collect more data than traditional teams of professional scientists. Participation in research can also increase
volunteers’ knowledge about and appreciation of science. At the same time, there are worries about the quality of
data that community science projects produce. Can the work of non-professionals really deliver trustworthy re-
sults? Attempts to answer this question generally compare data collected by volunteers to data collected by
professional scientists. When volunteer data is more variable or less accurate than professionally collected data,
then the community science project is judged to be inferior to traditional science. I argue that this is not the right
standard to use when evaluating community science, because it relies on a false assumption about the aims of
science. I show that if we adopt the view that science has diverse aims which are often in tension with one
another, then we cannot justify holding community science data to an expert accuracy standard. Instead, we
should evaluate the quality of community science data based on its adequacy-for-purpose.
When I try to learn something new, like sketching, kayaking, or
playing the guitar, I judge my progress by comparing what I do to what
someone with expertise in the activity does. Odds are, you do too. Of
course, my drawings of birds will never be as good as Audobon's, and I'll
never be able to paddle a kayak or play a guitar as well as my teachers
can. That's fine—I don't want to be a world-class artist, athlete, or
musician. What I want is to sketch the birds I see outside, navigate
mellow rivers, and entertain friends around a campfire with a song or
two. But I can still meaningfully assess the quality of my drawings,
paddling, and music-making in comparison to experts. Even though I can
meet my personal goals while falling well short of expertise, there is an
important sense in which how good I am at making art or running
whitewater depends on how similar what I do is to what an expert does.

This basic idea—judging how good a product is by comparing it to
what an expert would produce—is an intuitive and often helpful way to
assess quality. But not always. Sometimes, being high quality and being
expert-like come apart. The Wright brothers' first airplane, for example,
had little in common with engineering expert Samuel Langley's aero-
drome. But the Wrights, who were bicycle salesmen and had no engi-
neering credentials, launched the first successful flight, while the
aerodrome sank in the Potomac River on its failed launch. In such cases,
we miss or undervalue excellence if similarity to what an expert would
produce is our only resource for assessing quality.

This paper is about one such case, the case of community science.
0 April 2021; Accepted 17 May 2

.

Community science is scientific investigation conducted partly or
entirely by non-professional scientists. It's a fast-growing and popular
approach to science, but because it involves non-professionals, pro-
ponents of community science often find themselves defending the
quality of its results. In response to worries about data quality in
particular, it has become common to evaluate community science pro-
jects by comparing the data they produce to expert or professionally-
produced data. The focus on expert accuracy springs from a desire to
ensure that community science data are accurately representing the
world. Expert data are seen as a useful proxy for assessing the actual
accuracy of the data community scientists produce.

For example, thousands of community scientists around the world use
a software program called Nature's Notebook to document shifts in plant
phenology (the timing of life cycle events such as flowering) caused by
climate change. Kerissa Fuccillo and collaborators studied the accuracy
of non-professionals’ phenological observations by sending 28 volunteers
and one ecologist to observe and record the phenological phases of 19
different species growing along a park trail in Portland, Oregon. The
researchers found that volunteer and expert observations agreed with
one another between 70 and 91% of the time, and they concluded that
“volunteers can provide reliable observations of plant phenology when
collecting explicit, standardized protocols” (Fuccillo et al., 2015, p. 921).

Here I argue that such volunteer-expert comparisons are a bad general
model for assessing the success of community science projects or the
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quality of the data they produce.1 Community science projects often have
different kinds of goals than traditional or expert-driven science. This is
not to say that community science is inferior science. Its goals, even when
they differ from those of traditional science, are fully scientific. Still, the
difference in goals justifies a standard of evaluation other than expert-
likeness. A better standard is known as adequacy-for-purpose (Parker,
2020). According to this standard, community science data should be
evaluated in terms of whether they are adequate for meeting the goals of
the investigation of which they are a part. Sometimes the goals of com-
munity science require expert quality data, but not always.

1. Community science

What I am calling community science is defined in different ways in
different fields and goes by many names, including citizen science,
community-based participatory research, and participatory action
research. It also includes a wide range of projects, from crowd-sourced
wildlife counts to public health initiatives to partnerships between pro-
fessional scientists and indigenous peoples. There are many ways of
taxonomizing this heterogenous category. For example, some researchers
categorize community science projects in terms of their different goals,
such as education, conservation, or policy change (e.g Wiggins &
Crowston, 2011), while others focus on the level of participant engage-
ment projects achieve (e.g. Shirk et al., 2012). These taxonomies also
have their critics, as well (e.g. Kimura & Kinchy, 2016; Ottinger, 2017).

This diversity of labels, projects, and taxonomies reflects the fact that
community science is a dynamic and fast-growing area of science.
Worldwide financial investment in community science is now in the
billions of dollars. There are established institutions dedicated to com-
munity science, including professional societies and academic journals.
Most importantly, community science promises a range of benefits that
many leaders believe make it an especially important area of focus.2

Prominent among these advantages is research volume. The best way
to answer many urgent scientific questions is by compiling vast datasets.
Take the example of climate change-induced shifts in plant phenology.
Understanding how the flowering and fruiting times of plants are shifting
is vital for conservation planning and adapting agricultural practices to
climate change. Scientists have sophisticated tools for studying pheno-
logical shifts, including models that predict their future trajectories, but
they still need rich datasets from around the world. Finding the resources
to pay professionals or their students to make observations and collect
this data is a significant problem (McDonough MacKenzie 2020). Com-
munity science offers an alternative way to compile these phenological
datasets—train willing volunteers to do it.

Sometimes, increasing data volume also increases data quality. For
projects like monitoring the invasion front of an invasive species or
tracking the distribution of migratory birds at different points in time,
more data points often means better science, in the sense that the sci-
entific goals of the investigation are better served. Community science
may also increase the quality of scientific research in other ways. A
number of researchers have argued that high levels of non-professional
engagement, such as consulting community members when developing
1 Community science also involves much more than data collection, and many
scholars have argued that non-professionals can and should be involved in sci-
entific investigation throughout the research process, not merely in the context
of data collection. Though I am sympathetic to this claim, I focus on data
collection in this paper because of the influence the expert accuracy standard
has over the design and implementation over community science projects.
2 Not only is community science a fast-growing area of science, but interdis-

ciplinary scholarship that raises normative questions about community science
is fast-growing as well. In this paper, I am focused on evaluating the quality of
community science data, and so I engage most directly with work on data
quality from philosophy of science and the natural sciences. For an overview of
important and complementary work from other disciplines, see Arnstein, 1969;
Greenwood & Levin, 2007; Torre et al., 2012; Kemmis et al., 2014.
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research questions, designing a study, and interpreting or analyzing data,
can reveal insights that professionally trained scientists would miss
(Allen, 2017; Irwin 1995; Kimura& Kinchy, 2019; Ottinger, 2017; Whyte
& Crease, 2010; Wylie, 2015).

But all of these benefits depend upon community scientists meeting
some threshold of competency. For data collection in particular,
increasing data volume may decrease data quality if community scientists
are not skilled enough at identifying samples or measuring quantities.
The same is true of the other ways in which community scientists
participate in research. Contributions to research question selection,
study design, and data analysis may mislead as well as provide insight.
According to a survey by Burgess et al. (2017), many professional sci-
entists worry that community science data is of insufficient quality for
their purposes, and as a result, they prefer data from other professionals
rather than data from community scientists (see also Riesch & Potter,
2013).

Given the potential and rapid growth of community science, as well as
the concern that it can decrease the quality of scientific work, researchers
involved with community science have worked to develop ways of
evaluating the quality of community science data. One way, which I have
already mentioned, is to evaluate community science data by comparing
it to professionally collected data. I call this approach to evaluating
community science the expert accuracy standard. According to the expert
accuracy standard, a successful community science initiative should
produce data that is always comparable to data produced by experts.
Most research on community science data quality accepts the expert
accuracy standard. For example, Margaret Kosmala and collaborators
write, in a review of the literature on community science data quality,
that “a reasonable definition of high quality data for citizen science is
data of comparable accuracy and bias to that produced by professionals
and their trainees” (2016, p. 552). Though some researchers have
questioned the expert accuracy standard (e.g. Elliott & Rosenberg, 2019;
Ottinger, 2016, 2017), it is the consensus standard in the natural scien-
tific literature on community science.

An admirable feature of the expert accuracy standard is that it treats
community science as real science. Community science projects aim to
produce knowledge, influence policy, and improve the human condition,
just as traditional science does. I will argue later that there are differences
between the goals of community science and traditional science, but it is
also important to emphasize the overlap. And it is understandable to
think that achieving these shared goals requires community science to
meet the epistemic standards of traditional science. By holding commu-
nity and traditional science to the same standard when it comes to data
quality, the expert accuracy standard acknowledges that community
science has the potential to contribute to the scientific enterprise in
genuine, non-trivial ways. This advantage of the expert accuracy stan-
dard comes with a corresponding disadvantage, however. The disad-
vantage is that it is not sensitive to important differences between
community science and traditional science. As I will show, these differ-
ences mean that the expert accuracy standard is not the appropriate
standard for evaluating community science data.

The question of which standard we use to evaluate data quality is an
important one for community science. At stake is not only which
particular projects and datasets count as high quality, but also which
types of community science are deemed capable of producing high
quality data. If we use the expert accuracy standard, then only projects
where non-professional volunteers can achieve comparable results to
experts will count as high quality. These projects will be first in line for
funding, and it will be harder to implement “lower quality” projects.
Where such projects are implemented, their results will be greeted with
skepticism.

So, what types of community science can meet the expert accuracy
standard? First, projects that involve simple data collection come closer
to meeting the expert accuracy standard than other types of projects.
Examples of simple data collection include counting the number of
invasive plants one sees (Gallo & Waitt, 2011) or classifying a
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photograph of a galaxy according to its shape (Willett et al., 2013). These
are projects that only require participants to observe and record, rather
than, say, performing an experimental intervention. It is easier to train a
non-expert to make a specific kind of observation than it is to train them
to set up experimental and control treatments or to work with specialized
equipment. Nearly all of the highly publicized community science suc-
cess stories involve simple data collection, and I suspect this is due to the
influence of the expert accuracy standard. Burgess and collaborators, for
example, end their paper with the claim that while not all types of
biodiversity science can benefit from the participation of community
scientists, “evolving technology allows members of the public to partic-
ipate in monitoring and conservation-oriented data collection without
leaving home” (2017, pp. 118–119).

A second and related point is that projects which engage non-
professionals in shallow ways perform better with respect to the expert
accuracy standard than projects that involve deeper engagement. Simple
data collection is, to be sure, the easiest way to involve non-professionals
in scientific research, but many advocates of community science envision
projects where volunteer involvement goes beyond this rote and boring
work. Theirs is a vision of community science in which non-professionals
are involved in identifying research questions and in data analysis and
interpretation (see, e.g. Kemmis et al., 2014, p. 4). More than supplying
free labor, community scientists would be genuine partners in knowledge
production. But when it comes to these deeper levels of engagement,
meeting the expert accuracy standard is even more difficult. In fact, it
often does not even apply. We can, of course, formulate versions of the
standard that apply to data analysis, etc., but training a non-expert to
approximate an expert when it comes to statistical analysis is far more
difficult than training a non-expert to recognize the developmental stages
of butterfly larvae. As a consequence, projects that strive for deeper
engagement count as lower quality science, according to the expert ac-
curacy standard, in virtue of their commitment to this deeper engagement.

Finally, if we accept the expert accuracy standard, we will prefer
projects that are led and controlled by professional scientists over pro-
jects that are grassroots-inspired and led. The more control professional
scientists have over a project, the more likely that it will meet or come
close enough to meeting the expert accuracy standard. Grassroots pro-
jects are often explicitly activist in nature. In southwest Virginia, where I
live, groups of citizen activists have been fighting against the construc-
tion of a natural gas pipeline through the Appalachian Mountains for
years. Part of their work involves documenting harmful effects of the
pipeline build, from emerging sinkholes to dried up water supplies to
abnormal levels of sedimentation in local waterways.3 Such projects look
unscientific by some lights because they have no veneer of impartiality,
whereas an expert-led project would not take an explicit stance about the
harmfulness of a pipeline build in advance of data collection. Further,
these projects often do not try to meet the expert accuracy standard for
data quality, because their purpose is to mobilize community members or
get the attention of a governmental agency or non-profit, not to publish
results in a scientific journal.

Now, it could turn out to be true that expert-led surveying and
monitoring projects with shallow levels of volunteer engagement pro-
duce better results than other kinds of community science projects. So
far, the expert accuracy standard has run afoul of certain visions of what
community science can be, but this doesn't mean it's a bad standard. All
I've claimed here is that it matters whether we accept the expert accuracy
standard. This standard comes with a particular ideal of what community
science ought to be like, one that sidelines someways of imagining expert
and non-expert partnerships.

There is, particularly in the social scientific literature, an alternative
approach to evaluating community science and the data it produces. On
3 To learn about this project, visit the websites for POWHR (Protect Our
Water, Heritage, Rights) (https://powhr.org/mvwatch/) and New River Geo-
graphics (https://data-nrgeo.opendata.arcgis.com/).
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this approach, some community science projects are different enough
from traditional science that they require different standards of evalua-
tion. Gwen Ottinger has done a lot to draw attention to these kinds of
projects, which she terms social movement-driven citizen science (2016).
In her view, these projects do “not seek merely to reproduce scientific
methods in understudied areas; rather, these citizen projects critique, and
offer alternatives to, methods and standards accepted by the scientific
mainstream” (2017, p. 352). It is the inadequacy of scientific standards
for collecting, evaluating, and interpreting data that motivates these
community science projects in the first place. As a result, evaluating such
projects according to the standards of traditional science misses or dis-
counts their genuine contributions.

The idea that community science and traditional science sometimes
require different standards of evaluation has the following advantages: it
recognizes genuine and important differences between some types of
community science and traditional science, and it does not imply that
there is a hierarchy of community science quality with expert-controlled,
shallow modes of engagement at the top. But I also worry that this
approach concedes too much—that in advocating for different standards
for community science, it grants that community science is second-rate
science, even if it has other advantages that compensate for this fact.
It's a bit like me saying that while my bird sketches aren't great art, this
doesn't matter because they bring me pleasure and help sharpen my
powers of observation.

At this point it's important to clarify that when critiquing standards
for evaluating science, we may be claiming these standards are funda-
mentally flawed, and thus shouldn't be used at all, or we may be claiming
certain standards are appropriate for evaluating science, but not for
evaluating other kinds of activities. If, in claiming that community sci-
ence and traditional science need different standards of evaluation,
Ottinger and others mean that existing scientific standards are episte-
mically flawed, then of course it's wrong to judge community science by
these flawed standards. But this is a reason to change the standards we
use for evaluating traditional science, not a reason to use different
standards for community science and traditional science. My own
approach takes standards for evaluating traditional science to be largely
appropriate, if imperfect, though I recognize that this is not a commit-
ment shared by all theoretical perspectives.

If, on the other hand, the claim is that even standards appropriate for
evaluating traditional science are inappropriate for evaluating commu-
nity science, then my concern about conceding that community science is
second-rate science comes into play. Now, if one really believes that some
kinds of community science are a different kind of activity than tradi-
tional science, then insisting on different standards make sense. I am
going to proceed, however, from the assumption that community science
as I have defined it genuine science rather than some other kind of ac-
tivity. A full defense of this assumption is beyond the scope of this paper.

The adequacy-for-purpose standard I am going to defend is distinct
from both the expert accuracy standard and the social scientific alter-
native I have just described. The adequacy-for-purpose standard ac-
knowledges differences between community science and traditional
science that make the expert accuracy standard inappropriate, but also
insists that community science really is science—not an extra-scientific
form of knowledge production or an activity primarily focused on non-
scientific goals. Community science data that is adequate-for-purpose,
even if it is not expert-like, is as good, qua science, as data produced
by experts.

2. Against expert accuracy

My argument against the expert accuracy standard stems from the fact
that science has many different aims, some of which are in tension with
each other. Traditional science meets some of these aims well, but not
others. The same is true of community science. In fact, I'll suggest that
community science can meet certain central aims of science better than
traditional science can, even when it fails to meet the expert accuracy

https://powhr.org/mvwatch/
https://data-nrgeo.opendata.arcgis.com/
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standard. This argument against the expert accuracy standard differs
from the social scientific critique, which rests on the idea that community
science and traditional science are too different from one another to be
evaluated by the same standards.

The expert accuracy standard sets up the professional investigator as
the model investigator. In an ideal world—one where money to pay re-
searchers and the time to train them are not scarce—highly trained ex-
perts would conduct all scientific investigations. These trained experts
would get things right more often than people with less training. They
would make observations that those with less-finely-tuned senses would
miss. Even though we can't always realize this ideal, the expert accuracy
standard still considers it helpful, an ideal that should regulate how
science is done.4

But this ideal is wrong. And not because it makes the perfect the
enemy of the good or because it underestimates how severe the con-
straints on research actually are. The ideal is wrong because it imagines
that squads of highly trained professionals would be the best way to
further the aims of science if there were enough time andmoney to create
and pay them.

Here is my argument against the expert accuracy standard and the
ideal on which it rests:

1. Multiple Aims: Science has multiple aims that are in tension with one
another.

2. Tradeoffs: Particular projects typically further some aims of science
at the expense of others.

3. Unnecessary Expertise: Some aims of science can be achieved
without expert quality data.

4. No Hierarchy: There is no hierarchy of scientific aims such that
furthering certain ones is always better than furthering others.

5. No justification for the expert accuracy standard is compatible with
premises 1–4.

6. So, no justification for the expert accuracy standard succeeds.

The first premise, Multiple Aims, is the near-consensus view within
philosophy of science. The literature on Multiple Aims is extensive, and I
can only sketch the reasons philosophers find it persuasive here. If you
aren't convinced Multiple Aims is true, you won't accept the rest of the
argument. In that case, I'm content to illustrate the logical connection
between Multiple Aims and rejecting the expert accuracy standard.

Multiple Aims picks up on an idea with a long history in philosophy of
science: that truth is not the primary aim of science. As Philip Kitcher
(2001), (California, 1993) has pointed out, the primary aim of science
cannot be truth, because there are infinite truths, some of which are
uninteresting. Science picks and chooses which truths matter, so in
Kitcher's view, science aims to discover significant truth. Which truths
count as significant depend, in turn, on our values and interests, so in an
important sense, all scientific projects are motivated by values.

Other philosophers have focused on the mysterious and important
role that falsehoods, rather than truths, play in scientific investigation.
Highlights from this literature include Richard Levins' (1966) insight that
model-building involves inevitable tradeoffs between realism, precision,
and generality, Nancy Cartwright's argument that the laws of physics lie
(1983), and Bill Wimsatt's observation that false models are a means to
truer theories (1987). For Catherine Elgin (2017) and Angela Potochnik
(2017), falsehoods are so central to science that we can't even say the
primary epistemic aim of science is truth, significant or otherwise.
Instead, the primary epistemic aim of science is understanding. The
literature on these ideas is vast, but a common theme emerging from it is
4 Though the issue of who counts as an expert is an important one, I leave that
question aside in this paper. Here, I just use the intuitive conception of expertise
implicit in the expert accuracy standard—that of a person who is credentialed,
institutionally sanctioned, and both knowledgeable and experienced with
respect to a given domain.
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that science has diverse aims, and sacrificing truth is the only way to
achieve many of them.

There is no fixed list of the aims of science. Widely accepted aims of
science include both epistemic aims such as explanation and prediction,
as well as pragmatic aims such as informing policy or reducing suffering.
There need not be a sharp divide between the epistemic and pragmatic
aims, either. Ultimately, humans decide what the aims of science are, and
how important different aims are relative to one another. Without taking
a position here on how we should determine the aims of science and their
relative importance, it is easy enough to find examples that demonstrate
the existence of different aims and the ways in which they are in tension
with one another.

Kevin Elliott and Dan McKaughan (2014) discuss the case of scientific
risk assessments of toxic chemicals. One goal of risk assessment research
is to accurately understand the health risks toxic chemicals pose to the
public. Another goal is to identify risks quickly so that people aren't
exposed to toxic chemicals for a long time before researchers establish
the need for regulation. Unfortunately, the more accurate one aims to be
in estimating the risks, the longer it takes to complete a risk assessment.
Researchers and policy-makers must therefore choose which of these
aims takes priority as they set the procedure for conducting risk
assessments.

Additional support for Multiple Aims comes from Angela Potochnik
(2015), who argues that one consequence of the centrality of falsehoods,
or idealizations, in science is that, not only does science have many aims,
but “it is the norm for the pursuit of one aim to occur at the expense of
others” (p. 75). According to Potochnik, this tension among science's
different aims is due to two facts: science investigates complex phe-
nomena, and humans have limited powers of cognition and action. What
science allows us to do, despite these limitations, is achieve some kind of
understanding and control of a complex world. But the way in which
science helps us do this is by focusing our efforts on transcending one or a
few limitations at a time, not all of them at once. Our limitations also
shape the aims of science. The aims we have are responses to our limited
abilities to predict, make inferences, build new infrastructure, change
behaviors, etc. (Potochnik, 2015, p. 76). This connection between the
aims of science and human limitations is a fundamental reason why
different aims of science are in tension with one another.

The second premise, Tradeoffs, follows from the same considerations
that support Multiple Aims. If the aims of science are in tension with one
another, it will be uncommon for particular research projects to further
multiple aims at once. Or if they do, we still expect particular projects to
further certain aims at the expense of others. What I mean by “at the
expense of” is that data or other tools from a project that furthers one set
of aims will at best serve different sets of aims less well than alternative
data or tools could. For example, tools aimed at providing fast medical
diagnostics are not often not able to diagnose with as much accuracy as
tools designed with different aims in mind (e.g. Ranya et al., 2020). Or,
the data that help us understand the spread of a particular invasive
species may not be the ideal data for a meta-analysis aimed at identifying
common features of many different biological invasions (see, e.g. the
discussion in Thomsen, 2020).

The idea that science has diverse aims is now in place, so we canmove
to the Unnecessary Expertise premise. This premise is important because
even if science has multiple, conflicting aims which cannot all be
furthered by any single project, it could be still true that furthering any of
these aims requires expert-level data collecting abilities. If so, the expert
accuracy standard is in good shape.

The easiest way to see that Unnecessary Expertise is true is by way of
an example. One aim of science is to inform policy decisions. In the case
of invasive species research, decision-makers need to know if an invasive
species is present in an area in before implementing eradication or con-
trol techniques. Surveys that determine the presence or absence of the
species in question are sufficient to provide this information. Volunteers
only need “low” levels of skill or training to carry out such surveys
(Kosmala et al., 2016, p. 554), so they are popular community science
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projects. Since the only information needed to further the relevant aim of
science in this case is presence/absence data, community scientists can
be less accurate than experts at identifying invasive species, yet still
provide the information that policy-makers or land managers need.
Community scientists still need to meet some threshold of reliability in
order for worries about false positives and false negatives not to swamp
the benefits their data provide, but this threshold is lower than expert
accuracy. Some scientific research is finicky, with relatively little room
for error, but some of it is not, and it is counter-productive to think we
need expert quality data in these cases.

I will not take a position here on how often certain aims of science can
be achieved without expert-quality data. Obviously, my argument is
stronger the more common it is that the aims of science do not require
expert-quality data. But how prevalent these situations are is an empirical
question, and not one I or anyone else is in a position to answer at
present.

Premise 4, No Hierarchy, claims that there is no single aim of science
that we should always prefer to further. If there was such an aim, and if
expert-quality data was required to further it, then there might be a
reason to relegate community science data that fail the expert accuracy
standard to second-class status. Useful in their way, but unable to further
the “high” aim of science. It is very unlikely that science has such an aim,
however. First, if we look at scientific practice, we do not see one aim that
emerges as preferred over the others. Second, if we accept Multiple Aims,
there is no reason to think there is one fundamental scientific aim that is
not in tension with some of science's other aims.

Of course, there are norms all scientific work should follow, such as
not fabricating data. Following these norms can be in tension with
furthering legitimate aims of science. But the existence of norms that
should be followed no matter what is a different matter than the exis-
tence of an aim of science that trumps all others.

I should also clarify that No Hierarchy is compatible with the exis-
tence of many other kinds of hierarchies among the diverse aims of sci-
ence. It is compatible, for instance, with the idea that the epistemic aims
of science are more important than the pragmatic ones, or vice versa. I
will not take a stand here on what, if any, hierarchies there are among the
aims of science, except to deny there is a hierarchy in the strong sense
required to save the expert accuracy standard.

The argument's final premise states that no justification for the expert
accuracy standard (which says that a successful community science
initiative should produce data that are always comparable to data pro-
duced by experts) is compatible with premises 1–4. To illustrate, let's
return to the example of presence/absence data to inform invasive spe-
cies management. We've established that in this case, expert-quality data
isn't necessary to further a legitimate aim of science. So, applying the
expert accuracy standard to evaluate a community science project whose
volunteers record presence/absence data for an invasive species with
less-than-expert accuracy would misclassify what is, in reality, high
quality science. It would treat data from this project as lacking to the
extent that community scientists are less accurate than experts, when in
fact this project is adequate for the purpose it tries to accomplish. More
accurate data would be necessary for other scientific purposes, but if the
Multiple Aims and Tradeoffs premises are true, then there is not a good
reason to expect this project to meet standards appropriate for other
scientific purposes. And, given No Hierarchy, it's not true that an aim of
science requiring expert accuracy in data collection would always have to
trump the aim of the presence/absence study.

There are at least some (just how many is an open question) aims of
science that can be furthered without expert quality data, and enough
community science projects that contribute to these aims, that the expert
accuracy standard fails as a general way of evaluating community science
data. No justification for the expert accuracy standard succeeds. There
may be particular community science projects where expert-level accu-
racy is needed, but this is not enough to license adopting it as a general
way of evaluating community science projects.

Before abandoning the expert accuracy standard altogether, however,
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we should consider whether it can be salvaged through revision. After all,
the idea that expertise sets the standard for quality dies hard. One thing a
defender of the expert accuracy standard can readily concede is that
failing to meet the expert accuracy standard does not mean data are
useless. It just means that data are not as good as they would be if they
did meet the expert accuracy standard. The alternative to less-than-
expert quality community science data is likely no data at all, and
some data is usually better than no data. It makes sense, then, to
acknowledge that sloppy or somewhat inaccurate data may contribute to
science. It may even make science better than it otherwise would be.

The expert accuracy standard can accommodate this point by shifting
from an all-or-nothing evaluation of the success of a community science
project to the idea that the closer community science data come to
approximating expert data, the better those data are. If we make this
revision, we will still look to experts in designing data collection pro-
tocols, even when we don't expect community scientists to be as good at
data collection as experts are. What the defender of the expert accuracy
standard will still insist on, however, is that there's no escaping expert
guidance in telling community scientists what to aim for. Sure, we
shouldn't dismiss community science that isn't of expert quality, but
neither should we pretend that expert accuracy isn't an important regu-
lative ideal and a useful way of assessing the quality of community
science.

Depending on how it is developed, I either disagree with this pro-
posal, or it approximates the adequacy-for-purpose standard I will pre-
sent in the next section. If the core claim is that less-than-expert quality
data is worse science than expert quality data, but still useful, then I
disagree. On my view, for some data to be worse science than other data,
it would have to be worse at furthering the relevant aim of science. We've
already seen from the example of presence/absence data for an invasive
species that being of less-than-expert quality is an imperfect proxy for
how well data further aims of science. I'll provide another example in the
next section, along with a principled reason for thinking it's true more
generally that the expert accuracy standard doesn't track quality well
enough for this revised version to be acceptable.

If, instead, the core claim is that the revised expert accuracy standard
is something like, “a successful community science initiative should al-
ways produce data that is as comparable to data produced by experts as it
needs to be in order to further the relevant aims of science,” then the view
is the same as my own view. What I argue below, however, is that once
you go this far, expert accuracy drops out altogether.

One final point before I get to the adequacy-for-purpose standard. Not
only can non-professionals adequately further some aims of science even
when their data collection falls short of expert accuracy (this is the Un-
necessary Expertise premise), it may be that some aims of science can
only be furthered through the involvement of such non-professionals. I'm
thinking of an aim like increasing public understanding of science.
Research suggests that participating in the process of scientific inquiry is
an effective way of increasing someone's understanding of how science
works—of the nature of the enterprise itself (Bonney et al., 2016;
Weinberg et al., 2018). If this is correct, then community science
participation is an excellent tool for increasing the public's understanding
of science. And, as survey after survey shows, Americans have a very poor
understanding of science, both of particular scientific facts and of its
nature (Kennedy & Hefferon, 2019). Poor understanding of the nature of
science is a kind of public epistemic crisis, a possible contributor to the
rejection of the theory of evolution (Lombrozo et al., 2008),
human-caused climate change (Kovaka, 2019), and other scientific con-
sensuses with important implications for public life. Scientific research
conducted by professionals has clearly done little to prevent or abate this
crisis, but perhaps community science is part of the solution. If this is
right, it introduces the possibility of further tensions among the diverse
aims of science. Involving non-professionals in research could be
important for increasing public understanding of science, even as this
involvement makes it difficult or impossible to achieve certain explana-
tory or predictive aims that do require expert accuracy.
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You might object to this point on the grounds that I'm smuggling in an
educational aim, when talk about the aims of science is grounded firmly
in the sphere of producing new knowledge, not transmitting existing
knowledge. What's right about this objection is that not all education
counts as scientific inquiry. But this doesn't mean education is not a
central aim of science. I am happy to place science education that does
not involve genuine inquiry (e.g. teaching plate tectonics to children or
doing the classic baking soda volcano “experiment”) in the category of
not-science, but some kinds of scientific education really do involve
scientific investigation and inquiry. And, as any good humanist will tell
you, the line between education and research is far from clear. Com-
munity science projects are perhaps the pre-eminent example, but even a
single person dedicated to nature journaling and observation is partici-
pating in a process of inquiry continuous with the most sophisticated
laboratory science.

This point about increasing public understanding of science being an
aim of science is important because it shows another way in which
community science projects don't need to meet the expert accuracy
standard to be considered scientific successes. For projects with primarily
educational aims, the expert accuracy standard is even more inappro-
priate than it is in for projects which primarily aim at surveying and
monitoring. If educational projects are saddled with the expectation that
they need to further both their educational aims and aims that require
expert data quality, they are being set up to fail.

I also don't think I've exhausted the aims of science that community
science can fulfill better than traditional science can. Perhaps mobilizing
large numbers of people to action, or improving health, or a number of
other aims also fall into this category. All of this being said, it is still
important to evaluate community science. So if we reject the expert ac-
curacy standard, what other options do we have?

3. Adequacy for purpose

As an alternative to the expert accuracy standard, I will borrow a set
of ideas from Alisa Bokulich and Wendy Parker's recent work on data
evaluation (2021). They present what they call an adequacy-for-purpose
standard for evaluating the quality of scientific data. Though they have
traditional scientific data in mind, the adequacy-for-purpose standard is
flexible enough to apply to community science data as well. In arguing
that we use this standard when evaluating community science data, I am
developing Kevin Elliott and Jon Rosenberg's recent claim (2019) that
when evaluating community science data, we need to consider the aims
for which it was produced. At the heart of the adequacy-for-purpose
standard is the idea that data quality depends on a number of di-
mensions, including who uses the data and the purposes for which they
are used. The same data can count as high or low quality depending on,
among other things, who uses the data and why.

The adequacy-for-purpose standard arises from what Bokulich and
Parker call a pragmatic representational view of data. Data, in their view,
are records of the results of a process of inquiry, and they represent the
world rather than providing an unmediated view of it. Like any repre-
sentation, data vary in their accuracy, resolution, and precision. Re-
searchers collect data because it serves as evidence—not only for
questions the data collector is interested in, but also for other researchers
and other purposes. That is, the evidential value of data are not fixed
(Leonelli, 2019).

According to Bokulich and Parker, a consequence of this view of data
is that “the quality of some data or data model is relative to one or more
purposes of interest; the question is not whether some data are ‘good’ or
‘bad’ … but rather whether they can be used to achieve the particular
epistemic or practical aims that interest their users” (2021, p. 31). In
order to determine when data are good enough for particular purposes,
or what purposes some data are good enough for, we have to engage in
data evaluation. And the appropriate standard for data evaluation is
adequacy-for-purpose. Drawing on Parker (2020), Bokulich and Parker
present two ways of thinking about adequacy-for-purpose. These aren't
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the only two possibilities, but they provide a sufficient flavor of the idea.
The first sense is adequacy-for-purpose in a given instance:

Data are adequateI-for-P just in case the use of data D in instance I
would (or would be very likely to) result in the achievement of purpose P
(ms, p. 11).

The second sense is adequacy-for-purpose given certain resources:
Data are adequateR-for-P just in case the user U has access to infor-

mational, technological, cognitive and practical resources R such that
there is some coherent way W that U could use data D to achieve purpose
P (ms, p. 11).

Adequacy-for-purpose, then, is partly about how data represent the
world, but also very much about the complex relationship among data,
data users, their purposes, and their resources, including their scientific
methods and tools and their background circumstances. These different
dimensions create what Parker (2020) calls a problem space. The di-
mensions in the problem space set what sort of data can fulfill the sci-
entific purpose in question. Depending on the details of the problem
space, data will need to have certain properties, including but not limited
to particular levels of accuracy, resolution, and precision.

Dimensions of a problem space can vary significantly across contexts.
Data users in some community science projects will not be professional
scientists but laypeople. This fact expands one dimension of the problem
space relative to most traditional science projects. At the same time, a
community science project's resources (or the resources of those who will
use its data) may be very constrained compared to those of a traditional
science project. This combination of a broader set of users but narrower
set of resources affects the kind of data that will meet the adequacy-for-
purpose standard.

Let's compare how the expert accuracy standard and the adequacy-
for-purpose standard would evaluate data from a recent community
science project run by Barbara Allen (2017). In 2014, Allen, along with
Alison Cohen (an epidemiologist), Yolaine Ferrier and Johanna Lees
(both anthropologists) conducted an environmental health study in one
of France's largest industrial zones, known as Fos-sur-Mer/Etang de
Berre. People who live in town bordering this industrial zone complain of
pollution-related health problems, but none of several professionally
conducted studies had produced evidence supporting their claims of a
systematic problem. Allen and her collaborators set out to study the issue
once again, this time with citizen involvement at every stage of the
research, from study design, to execution, to interpretation and
reporting.

Allen's approach was to ask residents of the towns near the industrial
zone about their health, which the previous studies had not done. In
consultation with residents and local doctors, the team developed a
health survey. Central to the survey were questions about whether resi-
dents had ever been diagnosed with a variety of pollution-linked ill-
nesses. Then the team administered the survey to residents by going
door-to-door according to a randomly generated pattern. The survey,
which had a 45% response rate and yielded responses from 10% of the
population, revealed unusually high rates of asthma, cancer, and dia-
betes, along with skin conditions, nosebleeds, eye irritation, and head-
aches. Once the data were collected, the research team once again met
with the local community to develop a final report, which included
recommendations about how to respond to the results. These recom-
mendations ranged from ideas about responding to powerful polluting
industries to strategies for harm mitigation.

The French media payed quite a bit of attention to the final report
after it was published. Since the results conflicted with the previous
studies, Allen and her team had to defend and justify their approach.
Ultimately, however, the report has met with success. One town has
mobilized around the re-permitting of a large garbage incinerator.
Governmental health experts have recommended allocating more re-
sources for combatting chronic disease to the area. Local hospitals are
using the report to guide their research agendas.

How would the expert accuracy standard evaluate the data produced
by this community science project? If we think that producing data
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comparable to experts means producing data that is similar in kind or in
agreement with the data experts studying the issue had already pro-
duced, then this project obviously fails to meet the expert accuracy
standard. This project both chose a method that experts had elected not
to use, perhaps because they perceived it to be scientifically less rigorous,
and generated results that conflicted with expert conclusions.

Perhaps this is not a fair application of the expert accuracy standard.
On another interpretation, the data this study produced needs to be
comparable to what a team of experts (and not community scientists)
would have produced using similar methods. A defender of the expert
accuracy standard could say that the contrast class for applying the expert
accuracy standard is a study with similar methods that did not solicit
public input in survey design, data interpretation, or drafting the final
report. But there are two problems here. First, it is quite possible that this
hypothetical alternative study would have produced worse data than the
actual one, in the sense that information centrally relevant to the ques-
tion of interest would have been missed! According to Allen, the success
of the study is due in large part to the fact that it involved dozens of focus
groups, interviews, and open meetings with the local community to learn
which health issues the survey should include and prioritize (2017).
Second, the usefulness of the expert accuracy standard is called into
question if we must imagine hypothetical data, the character of which we
do not know, in order to evaluate data from actual studies.

The adequacy-for-purpose standard is much better suited to handling
this case. To apply it, we must characterize the different dimensions of
the problem space. The purpose of the study is to better understand and
improve the environmental health of people living in the region. The data
the study produced were intended to inform the public, both local and
national, to lobby for health resources, and to provide justification for
localities to change their policies with respect to polluting industries.
This means that the potential users of the data range from any residents
of Fos-sur-Mer/Etang de Berre to activists to health professionals to
politicians. These users have different sets of resources available to them,
so producing data that can be helpful to such different people with
different resources is quite a feat. Yet this project seems to have
accomplished it.

Even if we did not know that the study has already achieved some of
its purposes, we would be able to identify aspects of it that do make it
adequate for its purposes in several instances. For example, in designing
the study, Allen and her team used random sampling and ensured that
they had a sufficient response rate to defend the epidemiological rigor of
the results. This technique was important for convincing people outside
of the focal zone that the study was credible. Focus groups were another
technique that helped make the data actionable for local residents.
Simply learning that you live in a town where people get cancer and
diabetes more than in other parts of France might not motivate you to
action, unless you have the resources and inclination to move. But pre-
senting the data in a context where people can brainstorm solutions like
stopping street cleaners from using mechanical blowers, or changing the
times of day that schools hold sports practice, achieves adequacy-for-
purpose in a problem space with a diverse set of non-expert data users.

The results of this environmental health survey—both the data and
the actions stemming from them—speak for themselves. We should want
a standard of community science data evaluation that recognizes this
study as high-quality science, not merely high-quality activism. The
expert accuracy standard does not do this, at least not without a signif-
icant departure from the spirit of the standard and a sacrifice in appli-
cability. But the adequacy-for-purpose standard does recognize this study
as high-quality science, despite its unusual form, because the data it
produced are able to further the relevant scientific aims.

4. Conclusion

I opened this paper by talking about cases where something like the
expert accuracy standard is appropriate. When it comes to my personal
hobbies, I can evaluate my skills in two different ways. I can ask, how
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good am I, objectively, at drawing or kayaking or playing the guitar? To
answer this question, comparing my performance to expert performances
is helpful. I can also ask, am I good enough at drawing, kayaking, or
playing the guitar to accomplish what I want to accomplish with these
skills? To answer this question, comparing myself to experts isn't helpful.
Instead, something closer to an adequacy-for-purpose standard does the
job.

What is distinctive about the adequacy-for-purpose standard for
community science is that it doesn't entail admitting that community
science is as different from expert science as my attempts at kayaking are
from a whitewater champion's. Though there are often differences be-
tween the aims of community science and the aims of traditional science,
the aims are still scientific aims. I can never take a rightful place among
Olympic athletes simply because my athletic pursuits fulfill the aims of
being personally rewarding. But my argument here is that community
science and traditional science really are peers, and adopting the
adequacy-for-purpose standard for evaluating community science data is
the proper way to acknowledge this.
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